Preferred sensor sites for surface EMG signal decomposition.

نویسندگان

  • Farah Zaheer
  • Serge H Roy
  • Carlo J De Luca
چکیده

Technologies for decomposing the electromyographic (EMG) signal into its constituent motor unit action potential trains have become more practical by the advent of a non-invasive methodology using surface EMG (sEMG) sensors placed on the skin above the muscle of interest (De Luca et al 2006 J. Neurophysiol. 96 1646-57 and Nawab et al 2010 Clin. Neurophysiol. 121 1602-15). This advancement has widespread appeal among researchers and clinicians because of the ease of use, reduced risk of infection, and the greater number of motor unit action potential trains obtained compared to needle sensor techniques. In this study we investigated the influence of the sensor site on the number of identified motor unit action potential trains in six lower limb muscles and one upper limb muscle with the intent of locating preferred sensor sites that provided the greatest number of decomposed motor unit action potential trains, or motor unit yield. Sensor sites rendered varying motor unit yields throughout the surface of a muscle. The preferred sites were located between the center and the tendinous areas of the muscle. The motor unit yield was positively correlated with the signal-to-noise ratio of the detected sEMG. The signal-to-noise ratio was inversely related to the thickness of the tissue between the sensor and the muscle fibers. A signal-to-noise ratio of 3 was found to be the minimum required to obtain a reliable motor unit yield.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative Analysis of Wavelet-based Feature Extraction for Intramuscular EMG Signal Decomposition

Background: Electromyographic (EMG) signal decomposition is the process by which an EMG signal is decomposed into its constituent motor unit potential trains (MUPTs). A major step in EMG decomposition is feature extraction in which each detected motor unit potential (MUP) is represented by a feature vector. As with any other pattern recognition system, feature extraction has a significant impac...

متن کامل

An Android Application for Estimating Muscle Onset Latency using Surface EMG Signal

Background: Electromyography (EMG) signal processing and Muscle Onset Latency (MOL) are widely used in rehabilitation sciences and nerve conduction studies. The majority of existing software packages provided for estimating MOL via analyzing EMG signal are computerized, desktop based and not portable; therefore, experiments and signal analyzes using them should be completed locally. Moreover, a...

متن کامل

Decomposition of surface EMG signals.

This report describes an early version of a technique for decomposing surface electromyographic (sEMG) signals into the constituent motor unit (MU) action potential trains. A surface sensor array is used to collect four channels of differentially amplified EMG signals. The decomposition is achieved by a set of algorithms that uses a specially developed knowledge-based Artificial Intelligence fr...

متن کامل

Comparative Study of Different EMG Signal decomposition Techniques

EMG signals are electromyogram signals generated by firing of MUs (motor units) in muscle fibers. The decomposition of EMG signal of a muscle provides useful information for the diagnosis of neuro-muscular diseases by physician and neurologist. In decomposition of EMG signal different MUAPs (Motor Unit Action Potentials) are classified into different categories. This paper gives a review of dif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physiological measurement

دوره 33 2  شماره 

صفحات  -

تاریخ انتشار 2012